
© 2021 Arm

Feder Liang
Arm

Trusted Firmware-M

FP support in TF-M
Update

2022 March

2 © 2021 Arm

FP support in TF-M (Update)

• Armv8.0 FP support (IPC, SFN)

• Armv8.1 FP support (IPC, SFN)

• M-Profile Vector Extension (MVE) support vs. FP support

3 © 2021 Arm

Name Description Security State
Banked

CPACR Coprocessor Access Control Register Yes

CPPWR Coprocessor Power Control Register No

FP Register
Bank

FP caller save registers (S0–S15)
FP callee save registers (S16–S31)

No

FPSCR Floating-point Status and Control Register No

FPCCR Floating Point Context Control Register Partial

• LSPEN Enable/Disable lazy stacking No

FPCAR Floating Point Context Address Register Yes

FPDSCR Floating Point Default Status Control Register Yes

MVFR0, 1, 2 Media and FP Feature Register 0, 1, 2 No

FP context to be protected:

• FP registers (S0-S31)

• FPSCR

FP context is shared between S and NS.

FP Context

4 © 2021 Arm

FPSCR
Floating-point Status and Control Register

• Providing status information about the floating-point operation results.

• Defining some of the floating-point operation behaviors.

• The vector element size used when applying low-overhead-loop tail predication to
vector instructions.

• The exception bits can be used by software to detect abnormalities in floating point
operations

5 © 2021 Arm

Armv8.0 FP support for IPC Model
For processor support armv8-m.main

Items Details

Submit Release 1.5.0 5519438

Scope SPE only SPE and NSPE

FP context protection mechanism

FP context saved in secure partition’s stack.

FP context is saved (also invalidated) and restore automatically by cortex-m
processor hardware mechanism during exception entry and exception return.

Prevent non-secure from modifying FPU’s power setting (CPPWR).

Toolchain GNU Arm embedded toolchain GNU Arm embedded toolchain

ABI soft, softfp, hard soft, hard

NS FPU usage Disable non-secure access to Floating-
point Unit (FPU).

Permit non-secure access to FPU.

Lazy stacking Enable/Disable lazy stacking in SPE only. Lazy stacking can only be enabled or
disabled for whole system from

SPE(LSPENS).

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/commit/?h=refs/heads/master&id=551943850439cd2a372b9fb1c72a93da57a248d6

6 © 2021 Arm

Armv8.0 FP support for IPC model in TF-M
Lazy stacking disabled

NS Thread

NS S

• Veneer code is written as assembly code in TF-M.

• NS FP context is saved and restored on NS agent thread’s stack. FPSCR is consistent for NS.

• Secure FP context is saved (also invalidated) and restored on SP’s stack before context switch to NS agent
thread. FPSCR is also consistent for each SP.

Call

Return

NS Agent Thread S Thread 1

S Thread 2

SPM
Scheduler

Context switch by SPM
scheduler

FP context is

consistent

Veneer
FP Context

(FP registers, FPSCR)

7 © 2021 Arm

Armv8.0 FP support for SFN Model (Under development)
For processor support armv8-m.main, isolation level 1

Items Details

Scope SPE and NSPE

FP context protection mechanism

Veneer implemented in assembly code.

Secure FP context are invalidated before function return to NS if secure FP context
is active.

FPSCR is saved on NS agent thread’s stack before secure function call and is
restored before function return to NS.

Prevent non-secure from modifying FPU’s power setting (CPPWR).

Toolchain GNU Arm embedded toolchain

ABI soft, hard

NS FPU usage Permit non-secure access to FPU.

Lazy stacking Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).

8 © 2021 Arm

Armv8.0 FP support for SFN model (Demo)

• __tfm_psa_secure_gateway_attributes__
• psa_status_t tfm_psa_call_veneer(psa_handle_t handle, uint32_t

ctrl_param, const psa_invec *in_vec, psa_outvec *out_vec)
• {
• __ASM volatile(
• ".syntax unified \n"
• " push {r2, r3} \n"
• " ldr r2, [sp, #8] \n"
• " ldr r3, ="M2S(STACK_SEAL_PATTERN)" \n"
• " cmp r2, r3 \n"
• " bne reent_panic4 \n"
• " pop {r2, r3} \n"
• " mov r12, r3 \n"
• " mrs r3, control \n"
• " push {r2, r3} \n"
• " mov r3, r12 \n"
• " push {lr} \n"

• " vmrs r4, fpscr \n"
• " push {r4} \n“

• " bl psa_call_pack_sfn \n"

• " pop {r4} \n"
• " vmsr fpscr, r4 \n"

• " mrs r4, control \n"
• " tst.w r4, #8 \n"
• " beq no_sfpa2 \n"

• " eor r2, r2, r2 \n"
• " vmov d0, r2, r2 \n"
• " vmov d1, r2, r2 \n"
• " vmov d2, r2, r2 \n"
• " vmov d3, r2, r2 \n"
• " vmov d4, r2, r2 \n"
• " vmov d5, r2, r2 \n"
• " vmov d6, r2, r2 \n"
• " vmov d7, r2, r2 \n"
• "no_sfpa2: \n"

• " pop {r2, r3} \n"
• " mov lr, r3 \n"
• " pop {r2, r3} \n"
• " msr control, r3 \n"
• " bxns lr \n"
• "reent_panic4: \n"
• " svc "M2S(TFM_SVC_PSA_PANIC)" \n"
• " b . \n"
•);
• }

Save FPSCR(NS)

Restore
FPSCR(NS)

Check SFPA
(Secure Floating-

point active.)

Clear FP caller
registers

9 © 2021 Arm

Armv8.1 Features for FP
For processor support armv8.1-m.main

• FPCXT
• Usage for function call.
• Avoid corrupting of providing inconsistent of FPSCR between S and NS.

• VSCCLRM
• Avoid trigger the creation of inadvertent FP context during invalidation of S FP context before return to

NS.
• Because it doesn’t clear any registers if there isn’t a secure context active (as indicated by CONTROL_S.SFPA).

• Side effect of create FP context inadvertently
– Because this FP context has to be saved and restored for every context switch, it wastes time, stack space,

power etc. for the rest of the lifetime of that thread.

10 © 2021 Arm

FPCXT in Armv8.1

• FPSCR

Bit Field Descriptions

31 N Negative condition flag.

30 Z Zero condition flag.

29 C Carry condition flag.

28 V Overflow condition flag.

27 QC Cumulative saturation bit.

26 AHP Alternative half-precision control bit.

25 DN Default NaN mode control bit.

24 FZ
Flush-to-zero mode control for single and double precision
Floating-point.

23:22 RMode Rounding mode control field.

21:20 Reserved.

19 FZ16
Flush-to-zero mode control bit on half-precision data-
processing instructions.

18:16 LTPSIZE
The vector element size used when applying low-overhead-
loop tail predication to vector instructions.

15:08 Reserved.

7 IDC Input Denormal cumulative exception bit.

6:5 Reserved.

4 IXC Inexact cumulative exception bit.

3 UFC Underflow cumulative exception bit.

2 OFC Overflow cumulative exception bit.

1 DZC Divide by Zero cumulative exception bit.

0 IOC Invalid Operation cumulative exception bit.

• FPCXT Floating-point context payload
• Introduced in V8.1 to provide consistent FPSCR for S or NS both.
• Save/restore during security changes, avoid inconsistent FPSCR

occurs.

Bit Field Descriptions

31 SFPA Secure Floating-point active. CONTROL.SFPA

30 Reserved.

29 Reserved.

28 Reserved.

27 QC Cumulative saturation bit.

26 AHP Alternative half-precision control bit.

25 DN Default NaN mode control bit.

24 FZ
Flush-to-zero mode control for single and double precision
Floating-point.

23:22 RMode Rounding mode control field.

21:20 Reserved.

19 FZ16
Flush-to-zero mode control bit on half-precision data-
processing instructions.

18:16 LTPSIZE
The vector element size used when applying low-overhead-
loop tail predication to vector instructions.

15:08 Reserved.

7 IDC Input Denormal cumulative exception bit.

6:5 Reserved.

4 IXC Inexact cumulative exception bit.

3 UFC Underflow cumulative exception bit.

2 OFC Overflow cumulative exception bit.

1 DZC Divide by Zero cumulative exception bit.

0 IOC Invalid Operation cumulative exception bit.

Same

11 © 2021 Arm

Armv8.1 FP support in TF-M for IPC model
For processor support armv8.1-m.main

Items Details

Scope SPE and NSPE

FP context protection mechanism
(Same as Armv8.0 FP support)

FP context saved in secure partition’s stack.

FP context is saved (also invalidated) and restored automatically by cortex-m
processor hardware mechanism during exception entry and exception return.

Prevent non-secure from modifying FPU’s power setting (CPPWR).

Toolchain GNU Arm embedded toolchain:
add __ARM_ARCH_8_1M_MAIN__ manually.

ABI soft, hard

NS FPU usage Permit non-secure access to FPU.

Lazy stacking Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).

FPCXT and VSCCLRM
are not used

12 © 2021 Arm

Armv8.1 FP support for SFN model (Under development)
For processor support armv8.1-m.main

Items Details

Scope SPE and NSPE

FP context protection mechanism

Veneer implemented in assembly code

Secure FP context are invalidated before function return to NS if secure FP context
active: By VSCCLRM

FPSCR is saved before secure function call: vstr FPCXTNS, [sp, #-4]!
And is restored before function return to NS: vldr FPCXTNS, [sp], #4

Prevent non-secure from modifying FPU’s power setting (CPPWR).

Toolchain GNU Arm embedded toolchain

ABI soft, hard

NS FPU usage Permit non-secure access to FPU.

Lazy stacking Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).

13 © 2021 Arm

Armv8.1 FP support for SFN model (Demo)

• psa_status_t tfm_psa_call_veneer(psa_handle_t h, uint32_t ctrl, const psa_invec *in_vec, psa_outvec *out_vec)

• {

• __ASM volatile(

• ".syntax unified \n"

• " push {lr} \n"

• " vstr FPCXTNS, [sp, #-4]! \n"

• " bl psa_call_pack_sfn \n" /* ABI to psa framework */

• " vscclrm {s0-s15, vpr} \n"

• " vldr FPCXTNS, [sp], #4 \n"

• " pop {r3} \n"

• " mov lr, r3 \n"

• " bxns lr \n"

•);

• }

Save FPCXTNS
(FPSCR NS)

Restore FPCXTNS
(FPSCR NS)

Clear FP caller registers
if secure context active

(as indicated by
CONTROL_S.SFPA)

14 © 2021 Arm

MVE support vs. FP support
For processor support armv8.1-m.main

• M-Profile Vector Extension (MVE) is an optional vector architectural extension
introduced as part of the ARMv8.1-M architecture, for the Arm Cortex-M processor
series.

• MVE delivers a significant performance uplift for machine learning and digital signal
processing applications for small, embedded devices.

• MVE reuses FP registers, enabling MVE is same as FP does.

• MVE working routine are same as FP mechanism.
• Such as CONTROL.FPCA, CONTROL.SFPA, FPCCR.LSPACT, lazy stacking, etc.
• Besides FP registers and FPSCR, VPR register are also pushed to stack by hardware during exception

entry.

• MVE is perfectly designed to exploit all existing security mechanisms already designed
for FP.

© 2021 Arm

Live Q & A

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm

