arm

Trusted Firmware-M FP support in TF-M Update

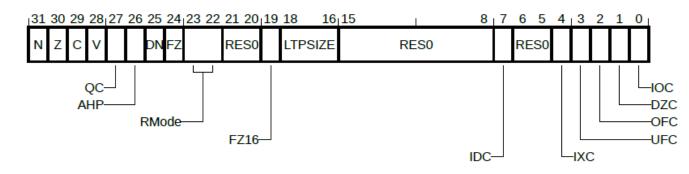
2022 March

Feder Liang Arm

FP support in TF-M (Update)

- Armv8.0 FP support (IPC, SFN)
- Armv8.1 FP support (IPC, SFN)
- M-Profile Vector Extension (MVE) support vs. FP support

FP Context


FP context is shared between S and NS.

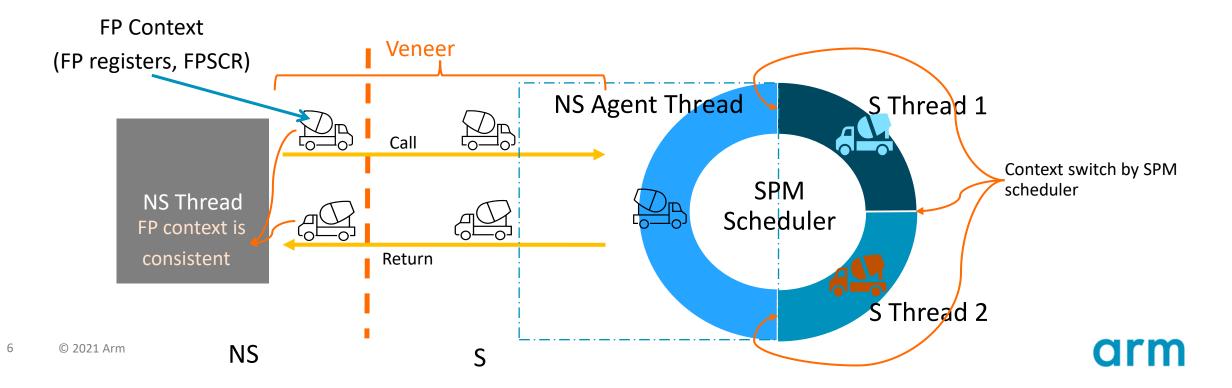
Name	Description	Security State Banked	
CPACR	Coprocessor Access Control Register	Yes	
CPPWR	Coprocessor Power Control Register	No	
FP Register	FP caller save registers (S0–S15)	No	FP context to be protected:
Bank	FP callee save registers (S16–S31)		• FP registers (S0-S31)
FPSCR	Floating-point Status and Control Register	No	• FPSCR
FPCCR	Floating Point Context Control Register	Partial	
	LSPEN Enable/Disable lazy stacking	No	
FPCAR	Floating Point Context Address Register	Yes	
FPDSCR	Floating Point Default Status Control Register	Yes	
MVFR0, 1, 2	Media and FP Feature Register 0, 1, 2	No	

FPSCR

Floating-point Status and Control Register

- Providing status information about the floating-point operation results.
- Defining some of the floating-point operation behaviors.
- The vector element size used when applying low-overhead-loop tail predication to vector instructions.
- The exception bits can be used by software to detect abnormalities in floating point operations

The FPSCR bit assignments are:


Armv8.0 FP support for IPC Model

Items	Deta	Details								
Submit	Release 1.5.0	<u>5519438</u>								
Scope	SPE only	SPE and NSPE								
	FP context saved in secure partition's stack	FP context saved in secure partition's stack.								
FP context protection mechanism	FP context is saved (also invalidated) and restore automatically by cortex-m processor hardware mechanism during exception entry and exception return.									
	Prevent non-secure from modifying FPU's power setting (CPPWR).									
Toolchain	GNU Arm embedded toolchain	GNU Arm embedded toolchain								
ABI	soft, softfp , hard	soft, hard								
NS FPU usage	Disable non-secure access to Floating- point Unit (FPU).	Permit non-secure access to FPU.								
Lazy stacking	Enable/Disable lazy stacking in SPE only.	Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).								

Armv8.0 FP support for IPC model in TF-M

Lazy stacking disabled

- Veneer code is written as assembly code in TF-M.
- NS FP context is saved and restored on NS agent thread's stack. FPSCR is consistent for NS.
- Secure FP context is saved (also invalidated) and restored on SP's stack before context switch to NS agent thread. FPSCR is also consistent for each SP.

Armv8.0 FP support for SFN Model (Under development)

For processor support armv8-m.main, isolation level 1

Items	Details						
Scope	SPE and NSPE						
	Veneer implemented in assembly code.						
FP context protection mechanism	Secure FP context are invalidated before function return to NS if secure FP context s active.						
PP context protection mechanism	FPSCR is saved on NS agent thread's stack before secure function call and is restored before function return to NS.						
	Prevent non-secure from modifying FPU's power setting (CPPWR).						
Toolchain	GNU Arm embedded toolchain						
ABI	soft, hard						
NS FPU usage	Permit non-secure access to FPU.						
Lazy stacking	Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).						

Armv8.0 FP support for SFN model (Demo)

				_handle_t handle, uint	32_τ	•				tst.w
(ctri_param (, const	psa_invec *in_vec,	<pre>psa_outvec *out_vec)</pre>		•				beq
	ASM v	volatil	e(•				eor
	".:	syntax i	unified		\n"	•				vmov
		push	{r2, r3}		\n"	•				vmov
		ldr	r2, [sp, #8]		\n"	•				vmov
		ldr	r3, ="M2S(STACK_S	EAL_PATTERN)"	\n"	•				vmov
		cmp	r2, r3	_ ,	\n"	•				vmov
		bne	reent_panic4		\n"	•				vmov
		рор	$\{r2, r3\}$		\n"	•				vmov
		mov	r12, r3		\n"	•				vmov
		mrs	r3, control		\n"	•			"no	_sfpa2
		push	{r2, r3}	Save FPSCR(NS)	\n"					
		mov	r3, r12	Save H Ser(IVS)	\n"	•				рор
		push	{lr}		\n"	•				mov
						•				рор
		vmrs	r4, fpscr		\n"	•				msr
		push	{r4}		\n"	•				bxns
						•			"re	ent_pa
		bl	<pre>psa_call_pack_sfn</pre>	1	\n"	•				svc
						•				b
		рор	{r4}		\n"	•);		
		vmsr	fpscr, r4	Restore	\n"	•	}	-		
				FPSCR(NS)						

" mrs " tst.w " beq	r4, control r4, #8 no_sfpa2	Check SFPA (Secure Floating- point active.)	
" eor " vmov " vmov " vmov	r2, r2, r2 d0, r2, r2 d1, r2, r2 d2, r2, r2		
" vmov " vmov	d3, r2, r2 d4, r2, r2 d5, r2, r2 d6, r2, r2	Clear FP caller registers	
" vmov "no_sfpa2:	d7, r2, r2		
" pop " mov " pop " msr " bxns "reent_pan	<pre>{r2, r3} lr, r3 {r2, r3} control, r3 lr ic4:</pre>		
" svc " b	IIC4: "M2S(TFM_SVC_PS ·	A_PANIC)"	

Armv8.1 Features for FP

- FPCXT
 - Usage for function call.
 - Avoid corrupting of providing inconsistent of FPSCR between S and NS.
- VSCCLRM
 - Avoid trigger the creation of inadvertent FP context during invalidation of S FP context before return to NS.
 - Because it doesn't clear any registers if there isn't a secure context active (as indicated by CONTROL_S.SFPA).
 - Side effect of create FP context inadvertently
 - Because this FP context has to be saved and restored for every context switch, it wastes time, stack space, power etc. for the rest of the lifetime of that thread.

FPCXT in Armv8.1

• FPSCR

Bit	Field	Descriptions
31	Ν	Negative condition flag.
30	Z	Zero condition flag.
29	С	Carry condition flag.
28	V	Overflow condition flag.
27	QC	Cumulative saturation bit.
26	AHP	Alternative half-precision control bit.
25	DN	Default NaN mode control bit.
		Flush-to-zero mode control for single and double precision
24	FZ	Floating-point.
23:22	RMode	Rounding mode control field.
21:20		Reserved.
		Flush-to-zero mode control bit on half-precision data-
19	FZ16	processing instructions.
		The vector element size used when applying low-overhead-
18:16	LTPSIZE	loop tail predication to vector instructions.
15:08		Reserved.
7	IDC	Input Denormal cumulative exception bit.
6:5		Reserved.
4	IXC	Inexact cumulative exception bit.
3	UFC	Underflow cumulative exception bit.
2	OFC	Overflow cumulative exception bit.
1	DZC	Divide by Zero cumulative exception bit.
0	IOC	Invalid Operation cumulative exception bit.

Same

• FPCXT Floating-point context payload

- Introduced in V8.1 to provide consistent FPSCR for S or NS both.
- Save/restore during security changes, avoid inconsistent FPSCR occurs.

Bit	Field	Descriptions
31	SFPA	Secure Floating-point active. CONTROL.SFPA
30		Reserved.
29		Reserved.
28		Reserved.
27	QC	Cumulative saturation bit.
26	AHP	Alternative half-precision control bit.
25	DN	Default NaN mode control bit.
		Flush-to-zero mode control for single and double precision
24	FZ	Floating-point.
23:22	RMode	Rounding mode control field.
21:20		Reserved.
		Flush-to-zero mode control bit on half-precision data-
19	FZ16	processing instructions.
		The vector element size used when applying low-overhead-
18:16	LTPSIZE	loop tail predication to vector instructions.
15:08		Reserved.
7	IDC	Input Denormal cumulative exception bit.
6:5		Reserved.
4	IXC	Inexact cumulative exception bit.
3	UFC	Underflow cumulative exception bit.
2	OFC	Overflow cumulative exception bit.
1	DZC	Divide by Zero cumulative exception bit.
0	IOC	Invalid Operation cumulative exception bit.

Ο

Armv8.1 FP support in TF-M for IPC model

Items	Details						
Scope	SPE and NSPE						
	FP context saved in secure partition's stack.						
FP context protection mechanism (Same as Armv8.0 FP support)	FP context is saved (also invalidated) and restored automatically by cortex-m processor hardware mechanism during exception entry and exception return.						
(Same as Armvo.0 FP Support)	revent non-secure from modifying FPU's power setting (CPPWR).						
Toolchain	GNU Arm embedded toolchain: add ARM_ARCH_8_1M_MAIN manually.						
ABI	soft, hard						
NS FPU usage	Permit non-secure access to FPU.						
Lazy stacking	Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).						
FPCXT and VSCCLRN are not used							

Armv8.1 FP support for SFN model (Under development)

Items	Details						
Scope	SPE and NSPE						
	Veneer implemented in assembly code						
ED contaxt protection machanism	Secure FP context are invalidated before function return to NS if secure FP context active: By VSCCLRM						
FP context protection mechanism	FPSCR is saved before secure function call: vstr FPCXTNS, [sp, #-4]! And is restored before function return to NS: vldr FPCXTNS, [sp], #4						
	Prevent non-secure from modifying FPU's power setting (CPPWR).						
Toolchain	GNU Arm embedded toolchain						
ABI	soft, hard						
NS FPU usage	Permit non-secure access to FPU.						
Lazy stacking	Lazy stacking can only be enabled or disabled for whole system from SPE (LSPENS).						

Armv8.1 FP support for SFN model (Demo)

- psa_status_t tfm_psa_call_veneer(psa_handle_t h, uint32_t ctrl, const psa_invec *in_vec, psa_outvec *out_vec)
- ASM volatile(Save FPCXTNS \n" ".syntax unified (FPSCR NS) " push {lr} \n" " vstr FPCXTNS, [sp, #-4]! \n" • Clear FP caller registers " bl psa_call_pack_sfn n'' / * ABI to psa framework */ if secure context active " vscclrm {s0-s15, vpr} \n" (as indicated by " vldr FPCXTNS, [sp], #4 \n" • CONTROL_S.SFPA) " pop {r3} \n \n" " mov lr, r3 **Restore FPCXTNS** " bxns Ir \n" (FPSCR NS));

arm

MVE support vs. FP support

- M-Profile Vector Extension (MVE) is an optional vector architectural extension introduced as part of the ARMv8.1-M architecture, for the Arm Cortex-M processor series.
- MVE delivers a significant performance uplift for machine learning and digital signal processing applications for small, embedded devices.
- MVE reuses FP registers, enabling MVE is same as FP does.
- MVE working routine are same as FP mechanism.
 - Such as CONTROL.FPCA, CONTROL.SFPA, FPCCR.LSPACT, lazy stacking, etc.
 - Besides FP registers and FPSCR, VPR register are also pushed to stack by hardware during exception entry.
- MVE is perfectly designed to exploit all existing security mechanisms already designed for FP.

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

· · · · · · · · · · · · · · · ·

| ar | 'n | n * | | | | | Thank You Danke |
|------------|----|------------|--|--|--|--|--|
| | | | | | | | Gracias |
| | | | | | | | 谢谢
ありがとう |
| | | | | | | | Asante |
| | | | | | | | Merci
감사합니다 |
| | | | | | | | धन्यवाद
Kiitos |
| | | | | | | | شکرًا |
| | | | | | | | ধন্যবাদ |
| © 2021 Arm | | | | | | | תודה 💼 🐳 |

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm